Raising the Bar on Sterile Compounding Safety

A midday symposium conducted at the 2021 ASHP Midyear Clinical Meeting and Exhibition

Tuesday, December 8, 2021 - 1:00pm to 2:30pm

AGENDA

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker/Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 PM - 1:10 PM</td>
<td>Introduction and Overview</td>
<td>Michael R. Cohen, RPh, MS, ScD (hon), DPS (hon), FASHP, President, Institute for Safe Medication Practices (ISMP)</td>
</tr>
<tr>
<td>1:10 PM - 1:30 PM</td>
<td>Times Change, and We Need to Change with Time</td>
<td>Christina Michalek, BSc, FASHP, Medication Safety Specialist, Institute for Safe Medication Practices (ISMP)</td>
</tr>
<tr>
<td>1:30 PM – 1:55 PM</td>
<td>We Know the Target, So How Do We Get There with Safety in Mind?</td>
<td>Rita K. Jew, PharmD, MBA, BCCPS, FASHP, Vice President of Operations, Institute for Safe Medication Practices (ISMP)</td>
</tr>
<tr>
<td>1:55 PM - 2:15 PM</td>
<td>Putting Recommendations into Action: Using Compounding Technology Safely</td>
<td>Kevin Hansen, PharmD, MS, BCPS, BCSCP, Assistant Director of Pharmacy: Pharmaceutical Compounding, Residency Program Director: HSPAL Cone Health / Moses H. Cone Memorial Hospital</td>
</tr>
<tr>
<td>2:15 PM – 2:30 PM</td>
<td>Question and Answer Session</td>
<td></td>
</tr>
<tr>
<td>2:30 PM</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>

CONTINUING EDUCATION INFORMATION

This CE activity is jointly provided by ProCE, LLC and the Institute for Safe Medication Practices (ISMP). ProCE is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. ACPE Universal Activity Number 0221-9999-21-278-L05-P/T has been assigned to this knowledge-based live CE activity (initial release date 12-8-21). This activity is approved for 1.5 contact hours (0.15 CEU) in states that recognize ACPE providers. This CE activity is provided at no cost to participants. Successful completion of the online post-test and evaluation at www.ProCE.com no later than January 7, 2022 is required to receive CE credit. CE credit will be automatically uploaded to NABP/CPE Monitor upon completion of the post-test and evaluation. No partial credit will be given. Conflict of interest disclosures are required of all faculty and shall be provided to participants at the conference.
FACULTY INFORMATION

Michael R. Cohen, RPh, MS, ScD (hon), DPS (hon), FASHP
President, Institute for Safe Medication Practices, Horsham, PA

Dr. Cohen's long-standing dedication to medication safety has made a tremendous difference for patients everywhere. He is president of The Institute for Safe Medication Practices (ISMP), a non-profit healthcare organization that specializes in understanding the causes of medication errors, providing error-reduction strategies to the healthcare community, policy makers, and the public. Cohen serves as co-editor of the ISMP Medication Safety Alert! publications that reach over one million health professionals in the US as well as regulatory authorities and others in over 30 foreign countries. He is also co-editor of the ISMP consumer website, www.consumermedsafety.org. Cohen is the Chairperson of the International Medication Safety Network (www.intmedsafe.net). He has served terms on the US FDA Drug Safety and Risk Management Advisory Committee (DSaRM) and the Nonprescription Drugs Advisory Committee (NDAC). He is currently a consultant to FDA and a member of the USP Expert Committee on Nomenclature and Labeling. Among recognitions he has received, he is a recipient of the John M. Eisenberg Patient Safety and Quality Award from the National Quality Forum and the Joint Commission, the Harvey A. K. Whitney Award from the American Society of Health-System Pharmacists and he has also been recognized as a MacArthur Fellow by the John D. and Catherine T. MacArthur Foundation.

Christina Michalek BSc Pharm, RPh, FASHP
Medication Safety Specialist, Institute for Safe Medication Practices, Horsham, PA

Christina is a Medication Safety Specialist and Administrative Coordinator for the Medication Safety Officers Society at the Institute for Safe Medication Practices. She began working with ISMP as an external consultant and advisor in 2001 and later joined the ISMP staff in 2010. At ISMP, Chris works collaboratively with health-system leaders and clinical staff in order to define, design, and improve medication safety initiatives. She has a passion for empowering others to enhance medication safety efforts and enjoys collaborating with healthcare practitioners and sharing best practices through educational programs at national, international, state, and local-level professional conferences. Chris also manages the update and analysis of ISMP’s Targeted Medication Safety Best Practices for Hospitals and is the ISMP lead for medication-related technology issues. Additionally, she has been serving as a Patient Safety Analyst to ECRI Patient Safety Organization since 2013.

Learn more about Christina here: https://www.ismp.org/staff/christina-michalek-bsc-pharm-rph-fashp

Rita Jew PharmD, MBA, BCPPS, FASHP
Vice President of Operations, Institute for Safe Medication Practices, Horsham, PA

Rita K. Jew, Pharm.D., MBA, BCPPS, FASHP is Vice President of Operations at the Institute for Safe Medication Practices (ISMP). She has more than 30 years of experience leading pharmaceutical care services. Prior to joining ISMP, she served as Principal of RKJ Health Partners, where she provided consulting services related to medication safety, pharmacy operations, pharmacy finance, specialty pharmacy, and sterile compounding. She also provided coaching and leadership training and advised technology start-ups. Before starting her own consulting business, Dr. Jew held leadership positions at well-known acute care institutions, including University of California San Francisco (UCSF) Health, Children’s Hospital of Orange County, and Children's Hospital of Philadelphia.

Learn more about Rita here: https://www.ismp.org/staff/rita-jew-pharmd-mba-bcpps-fashp
FACULTY INFORMATION (continued)

Kevin Hansen PharmD, MS, BCPS, BCSCP
Assistant Director of Pharmacy, Moses H. Cone Memorial Hospital

Kevin Hansen, PharmD, MS, BCPS is Assistant Director of Pharmacy at Moses H. Cone Memorial Hospital in Greensboro, N.C. Dr. Hansen provides leadership and operational oversight for pharmaceutical compounding and pharmacy perioperative services. He serves as the Residency Program Director for the Health-System Pharmacy Administration residency program. In addition, Dr. Hansen serves as adjunct faculty for the University of North Carolina Eshelman School of Pharmacy. Dr. Hansen earned his Doctor of Pharmacy degree from Lake Erie College of Osteopathic Medicine (LECOM) in Erie, PA and completed an ASHP-accredited PGY1/PGY2/MS Health-System Pharmacy Administration residency at the University of North Carolina Medical Center. He is board certified in pharmacotherapy through the Board of Pharmacy Specialties. Within Moses H. Cone Memorial Hospital, Dr. Hansen is involved in several committees and initiatives related to his practice interests of pharmaceutical compounding, handling hazardous drugs, medication and compounding safety, drug shortage management, and pharmacy perioperative services. He has taken a lead role in developing multidisciplinary teams, such as the Pharmaceutical Compounding Advisory Council and the Hazardous Drug Committee. He also provides pharmaceutical compounding guidance and standardization across Cone Health, a multi-hospital health system.

DISCLOSURE

It is the policy of ISMP and ProCE, LLC to ensure balance, independence, objectivity and scientific rigor in all of its continuing education activities. Faculty must disclose to participants the existence of any significant financial interest or any other relationship with the manufacturer of any commercial product(s) discussed in an educational presentation.

The speakers listed below have no relevant commercial and/or financial relationships to disclose:
Michael R. Cohen, RPh, MS, ScD (hon), DPS (hon), FASHP, President, ISMP
Christina Michalek, BSc Pharm, RPh, FASHP

The speakers listed below disclosed potential conflicts of interest*:
Rita K. Jew, Pharm.D., MBA, BCPPS, FASHP
Kevin Hansen, PharmD, MS, BCPS, BCSCP

*Conflicts identified were resolved with a peer review process.

Please note: The opinions expressed in this activity should not be construed as those of the CE provider. The information and views are those of the faculty through clinical practice and knowledge of the professional literature. Portions of this activity may include unlabeled indications. Use of drugs and devices outside of labeling should be considered experimental and participants are advised to consult prescribing information and professional literature.
OVERVIEW

Sterile compounding is an essential component of pharmacy practice for pharmacists and pharmacy technicians and efforts to identify and reduce potential adverse events during the preparation of sterile products is imperative to provide safe, optimal patient care.

Over the past 10 years there has been increased growth and maturity in the compounding technology market and an increased uptake by pharmacies in the use of technology during the sterile compounding process. However, despite advancements, a recent ISMP survey on pharmacy compounding systems and practices completed by over 600 practitioners revealed there remains an opportunity to improve the safety of sterile compounding practices as well as increase and enhance the safe use of technology in the process.

In September 2021, The Institute for Safe Medication Practices convened an invitational, virtual sterile compounding safety summit to specifically address safe practices related to the use of robotic compounding automation, sterile compounding workflow software, and automated compounding devices.

Join us for a symposium that will take you from the spark that triggered the summit, through the objectives, targets and structure used to develop new ISMP Best Practice Guidelines, concluding with a discussion of one organization’s journey using various sterile compounding technologies to reduce the risk for errors and the steps they took to minimize threats to safe technology use.

OBJECTIVES

The target audience for this activity includes pharmacists and pharmacy technicians in health-system settings. At the completion of this symposium, the participant will be able to:

1. Discuss ISMP survey results regarding sterile compounding
2. List key areas addressed during a recent sterile compounding safety summit
3. Describe safety gaps that exist when using technology to support sterile compounding
4. Identify best practices for the safe use of technology and automation during the compounding process
Raising the Bar on Sterile Compounding Safety

A Midday Symposium Conducted at the 2021 ASHP Midyear Clinical Meeting and Exhibition

This symposium is funded through an educational grant from Omnicell.

CE Activity Information & Accreditation

— This CE activity is jointly provided by ProCE, LLC and the Institute for Safe Medication Practices (ISMP). ProCE is accredited by the Accreditation Council for Pharmacy Education (ACPE) as a provider of continuing pharmacy education.

— This CE activity is approved for 1.5 contact hours (0.15 CEU) in states that recognize ACPE providers.
Disclosure*

It is the policy of ISMP and ProCE, LLC to ensure balance, independence, objectivity and scientific rigor in all of its continuing education activities. Faculty must disclose to participants the existence of any significant financial interest or any other relationship with the manufacturer of any commercial product(s) discussed in an educational presentation.

The speakers listed below have no relevant commercial and/or financial relationships to disclose:
- Michael R. Cohen, RPh, MS, ScD (hon), DPS (hon), FASHP, President, ISMP
- Christina Michalek, BSc Pharm, RPh, FASHP

The speakers listed below disclosed potential conflicts of interest*:
- Rita K. Jew, PharmD., MBA, BCPPS, FASHP
- Kevin Hansen, PharmD, MS, BCPS, BCSCP

*Conflicts identified were resolved with a peer review process

Please note: The opinions expressed in this activity should not be construed as those of the CE provider. The information and views are those of the faculty through clinical practice and knowledge of the professional literature. Portions of this activity may include unlabeled indications. Use of drugs and devices outside of labeling should be considered experimental and participants are advised to consult prescribing information and professional literature.

Online Evaluation and Statement of Completion

- www.ProCE.com
- Login with username and password
- Deadline: **January 7, 2022**

Attendance Code = ???????
Objectives

Following completion of this activity, participants will be able to:

1. Discuss ISMP survey results regarding sterile compounding
2. List key areas addressed during a recent sterile compounding safety summit
3. Describe safety gaps that exist when using technology to support sterile compounding
4. Identify best practices for the safe use of technology and automation during the compounding process

Times Change, and We Need to Change With Time

Christina Michalek, BSc Pharm, RPh, FASHP
Medication Safety Specialist
Institute for Safe Medication Practices
cmichalek@ismp.org
Sterile Compounding

- Essential component of pharmacy practice
- Prescribing is common and ubiquitous
- Safety is a journey that never ends

ISMP Pulse Check in 2020

ISMP MERP

+ Technology

Media Reports

Practice check

Practice check

Technology

Fatal Outcomes

Best Practices
Raising the Bar on Sterile Compounding Safety

Current Practice Insight- Our Goals

Within Pharmacy
- Learn
- Increase awareness
- Identify opportunities
- Identify safety challenges

Outside Pharmacy
- Learn
- Understand safe practices
- Identify training
- Identify safety challenges

Compounding outside the pharmacy

- 444 respondents
- 77% nurses
 - Anesthesia providers
 - Decentralized pharmacy staff, physicians
- 81% acute care
 - Ambulatory surgery center, infusion center, physician practice, long term care
- Most frequently prepared sterile injectables:
 - Intravenous push medications
 - Mostly medications transferred from vials to syringes (e.g., opioids, antiemetics, antibiotics, proton pump inhibitors)
 - Intermittent infusions
 - Mostly using vial and bag adapter systems
 - Intramuscular injections
 - Mostly vaccines, antipsychotic and, antibiotics
The Pharmacy Survey

- Compounding technologies
 - Yes/No and percent prepared, comments

- Safe compounding practices/conditions
 - Degree of implementation, comments

- Sterile compounding errors
 - Check list of items and open-ended question

The Results – Pharmacy Practices

- 634 pharmacy practitioners
 - 80% pharmacists
 - 18% technicians
 - 2% pharmacy students, residents, or medication safety officers

- 46% staff

- 47% manager/director/administrator

- 7% instructor/lead/coordinator/supervisor

- 87% from hospital pharmacy environment
 - 5% ambulatory infusion
 - 3% outpatient/compounding pharmacy
 - 5% home infusion/specialty/research

- 19% prepare non-sterile to sterile preparations
Raising the Bar on Sterile Compounding Safety

Compounding Technologies

Why focus on this?

- Observational studies of accuracy identified a mean daily error rate of 9%
- In a more recent study, automation identified 7.1% error rate
- When compared to manual processes, technology-assisted compounding provided a safety benefit detecting 14 times more errors
- Analysis of causes of compounding errors resulting in patient harm reveal opportunity for technology use

When there are manual components to our processes, we can err

ISMP Targeted Medication Safety Best Practices

- Best Practice #11
 - When compounding sterile preparations, perform an independent verification to ensure that the proper ingredients (medications and diluents) are added, including confirmation of the proper amount (volume) of each ingredient prior to its addition to the final container.
 - *Use technology* to assist in the verification process (e.g., barcode scanning verification of ingredients, gravimetric verification, robotics, IV workflow software) to augment the manual processes.
Compounding Technologies

57% (n=361) report using technologies when compounding

- **Barcode verification without images**: 48%
 - Using for 75% of all CSPs

- **Barcode verification with images**: 47%
 - Using for 75% of all CSPs

- **Multiple ingredient compounding devices**: 46%
 - Using for 10% of all CSPs

- **Image sharing**: 32%
 - Using for 50% of all CSPs

- **Barcode verification, images, and gravimetric verification**: 25%
 - Using for 50% of all CSPs

- **Robotic compounding**: 8%
 - Using for 30% of all CSPs

Stop the line/In line verifications

- 63% who utilize images to verify CSPs stop production for specific medications
- Some indicated doing it for all
- Specific medications:
 - All or certain hazardous drugs
 - All or certain high-alert medications
 - All or certain blood products
 - Biologics including monoclonal antibodies
 - Medications requiring dilution
Safe Compounding Practices

- ISMP identified nine best practices related to pharmacy sterile compounding

- Highest level of implementation: ensuring cleanroom design supporting one staff member working at a time per primary engineering control device (73% always, 15 often)

- Challenges to achieving this best practice: location, time of day, urgency of preparation, overall workload

Safe Compounding Practices

Standard Operating Procedures (SOPs)

- 56% defined and *always* followed
- 34% defined and *often* followed
- 10% *never, rarely, or sometimes* defined and followed

Differences in reporting of compliance

- Pharmacists: 54%
- Pharmacy Technicians: 62%
Safe Compounding Practices

During the verification process, it is easy to identify without any uncertainty which drugs, diluents, and volumes were used (including the number of vials/ampules/bags used) to prepare each CSP. 52% always easy to identify.

Pharmacists • 48%
Pharmacy Technicians • 62%

Safe Compounding Practices

Labeling Workflow
- 49% always follow a standard workflow
- Technicians tended to report higher compliance with a standard workflow for applying final product labels (58% compared to 46% for pharmacists)

Compounding Workflow
- 47% reported only one CSP is prepared at a time
- Some exceptions noted
Safe Compounding Practices

Preparation Information
- 49% dose volume information is always available
- Technicians reported differently from pharmacists (58% versus 46%)
- 20% reported that best practice is followed less than half the time

Workspace/Environment
- Sufficient counterspace, allowing room for separation of products, measured lighting and noise consistent with USP
- Scored the lowest of all best practices in the survey

Sterile Compounding Errors

- 74% of all respondents were aware of at least one pharmacy compounding error in the past 12 months
 • This included those caught and corrected in the pharmacy as well as those discovered after dispensing
 • A higher percentage of pharmacists were aware of the errors (79%) compared to technicians (67%)
Sterile Compounding Errors

- Incorrect dose or concentration: 58%
- Incorrect base solution: 51%
- Incorrect base solution volume: 43%
- Issue or error (or omission) with labeling of a CSP: 41%
- Incorrect reconstitution (volume, diluent): 36%
- Incorrect drug: 35%
- Wrong preparation technique (filtering, tubing): 26%
- Expired drug, base solution, or CSP: 16%
- Wrong timing (preparing on the wrong date): 12%
- Omission of a drug: 5%

Challenges

- Lack direct verification
- USP standards
- Training
- Competency
- Insufficient technology
- Space
- Staffing
- Variability
- Workload
- Failed leadership
- Lack supervision
Pharmacy Purchasing & Products Magazine

— Automated compounders: the larger the facility, the more likely they were to be using; use reported in almost half of facilities over 400 beds

— IV workflow automation: 36% overall
 • Ingredient product barcode scanning; in process image or video capture
 • Gravimetrics: 22%
 • Implementations are projected to continue in both mid- and large-sized facilities

— IV Robotics: 7% overall; however, almost one-fourth of larger facilities are using this technology- an increase from last year
 • Most have one robot and use it on a single shift

THRIV

— THRIV coalition for iv accuracy

— 2020 Survey IV Preparation Practices and Related Technology in US Hospital Pharmacies

— Setting: hospitals less than 50 to over 600 beds

— Half of the respondents were using a semi-automated IV workflow management system; 20% also using gravimetrics

— Over two-thirds of the respondents did not feel that manual compounding processes were sufficiently safe without IV workflow management systems
American Society of Health-System Pharmacists

— ASHP national survey of pharmacy practice in hospital settings: Dispensing and administration—2020

— Sterile compounding technology
 - Sterile preparation workflow management technology: 21.3% of hospitals
 - Barcode scanning to verify ingredients: 33.8%
 - Larger hospitals more likely than smaller to be using; steady increase in use
 - Gravimetrics: 5% - this has remained steady over the last 3 years

— Sterile compounding automation
 - Overall, 3.4% are using; robotic chemotherapy devices are used in 1.6% of hospitals

Why a Summit?
We Know the Target, so How Do We Get There with Safety in Mind?

Rita K. Jew, Pharm.D., MBA, BCPPS, FASHP
Vice President of Operations
Institute for Safe Medication Practices
rjew@ismp.org
Raising the Bar on Sterile Compounding Safety

Goal of Summit

- Update guidelines initiated 10 years ago and revised in 2016
- Focus on safety of compounding technology
- Explore safety gaps
- Consensus on best practices
- Guidelines will be evolving

Key Areas Addressed at Sterile Compounding Summit

- Automated compounders
- IV workflow software
- IV robots
- Manual compounding
- Essential technology attributes
- Safe pharmacy processes
- Identify safety gaps
- Propose best practices
Automated Compounders

Essential technology attributes

- Integration with EHR to eliminate transcription
- Clinical decision support with soft and hard stops for dosage limits and compatibilities
- Automated calculations and conversions
- Barcode verification of source products
- Validation process for calibrating the machine
- Gravimetric validation at completion of compounding process
- Near misses intercepted captured in a report to facilitate error analysis and process improvement

Automated Compounders

Safe Pharmacy Processes

- Workflow in place to capture new products prior to them being available for use
- Visual inspection of final product prior to dispensing
- Downtime procedures include backup equipment needs and annual tabletop simulation to identify gaps and revise procedures as necessary
Automated Compounders

Safety Gaps
- Manual additives
- Tubing and source product connection mix ups

Proposed Best Practices
- Strategy to limit amount of manual additives
- Utilize IVWFS or barcode scanning for manual additives
- Dedicated hood for automated compounding

IV Workflow Technology

Essential technology attributes
- Integration with EHR
- Ability to build a master formula record
- Automated calculations and conversions
- Barcode verification of all source products, including diluents for reconstitution
- Tracks all steps via video or images and/or gravimetrics
- Image captures clear pictures to differentiate essential information
- Allows for remote verification via images, video, and/or gravimetrics
- Tracks beyond use dating of opened or reconstituted drugs
- Near misses intercepted captured in a report to facilitate error analysis and process improvement
- Technology provides workload reports
Raising the Bar on Sterile Compounding Safety

IV Workflow Technology

Safe Pharmacy Processes

- Labels should remain in the queue until the time of compounding
- Hardware set up facilitates compounding without frequent sterility breeches
- Workflow in place to capture new products prior to them being available for use
- Visual inspection of final product prior to dispensing
- Downtime procedures include backup equipment needs and annual tabletop simulation to identify gaps and revise procedures as necessary

Safety Gaps

- Multiple vial or bag required & scanning policy
- Tolerance/minimum volume accurately measured by scale
- Overrides
- Label swapping
Raising the Bar on Sterile Compounding Safety

IV Workflow Technology

Proposed Best Practices

- IV workflow software required for compounding of ALL CSPs – minimum standard
- Scanning of every vial or bag required for compounding
- Vendor guidance on tolerance/minimum volume based on scale accuracy
- Image documentation & gravimetrics
- Hard stop when wrong product (NDC) is used
- One-piece workflow to prevent label swap
- Auxiliary label information included in product label

IV Robots

Essential technology attributes

- Integration with EHR
- Ability to build a master formula record
- Barcode verification for source products, including diluents for reconstitution
- Final product should have dispensing label attached
IV Robots

Safe Pharmacy Processes

- Staff operators are adequately trained & validated on robot operations prior to use & annual competency assessments thereafter
- Robust SOP for how to train the robot
- Staff ensure that routine calibration & certification of critical equipment is performed & documented
- Visual inspection of final product prior to dispensing
- Downtime procedures include backup equipment needs and annual tabletop simulation to identify gaps and revise procedures as necessary

Safety Gaps

- Label swapping
- Unreadable barcodes

Proposed Best Practices

- One-piece workflow to prevent label swap
- Auxiliary label information included in product label
- Comprehensive user service agreement
Use of Compounding Technologies

Proposed Best Practices

- Overarching technology infrastructure
- Employ human factor engineering principles
- Optimize utilization of technology
- Total productive maintenance
- FMEA

Using Compounding Technology Safely: Putting Recommendations into Action

Kevin N. Hansen, PharmD, MS, BCPS, BCSCP
Cone Health | Moses H. Cone Memorial Hospital
Assistant Director of Pharmacy: Pharmaceutical Compounding
Objective

- Identify best practices for the safe use of technology and automation during the compounding process

ISMP RECOMMENDATION

Current recommendations from ISMP Guidelines

BEST PRACTICE

Future considerations for best practice recommendations

Compounding Technology & Automation

| Compounding Technology | Application of scientific knowledge put into practical use during compounding processes to solve or identify problems (e.g. barcodes and scanners, gravimetric scales, etc.) | • Accuracy/Precision
• Ingredient Verification
• Standardized process
• Prompts
• Documentation |
|------------------------|---|--|
| Compounding Automation | Technologies that reduce human interventions during the compounding process (e.g. compounding, labeling, packaging, verification, etc.) | • Sterility
• Repeatability
• Reliability
• Efficiency |
Compounding Technology & Automation Today

- Current standards focus on **manual practices**

- Technology and automation viewed as **best practice** with a focus on accuracy/precision and ingredient verification

- Many of the technologies do not address **sterility assurance**, and in some cases may introduce contamination risks (e.g., using touchscreen with sterile gloves)

...the guidance encourages the adoption of new technological advances by the pharmaceutical industry. In particular, the guidance underscores the advantages that **automation and isolation concepts** offer in protecting the exposed sterile drug product during is aseptic manufacturer.

Barcode Ingredients

ISMP RECOMMENDATION

...the manual inspection of IV Admixture ingredients by pharmacy technicians and pharmacists is not a totally effective deterrent in preventing preparation and dispensing errors.

ISMP believes that **barcode scanning of base solutions and ingredients should now be considered the minimum requirement for pharmacy IV admixture services.**

Order:

ceFAZolin 2 g added to 100 mL 0.9% sodium chloride for injection

ISMP Scan ALL Ingredients
Compounding Segregation

ISMP RECOMMENDATION
In facilities that care for adult and pediatric and/or neonatal patients, the preparation of CSPs for each population is separated by time or location.

Independent Cleanroom Suites

Patient Specific:
- Adult
- Pediatric & Neonatal

Non-Patient Specific:
- Batching

Drug Inventory Storage and Replenishment

ISMP RECOMMENDATION
Sufficient space for drug storage is provided to permit SEGREGATION of each drug and concentration...drug inventory in the compounding area is minimized...barcode verification is used.

HEPA Filtered Cleanroom Carousel

MAIN PHARMACY
- HEPA Filtered, Positive Pressure
- Interlocking Door
- Barcode replenishment

CLEANROOM
- Interlocking Door
- Barcode Removal
- Extensive storage space
Raising the Bar on Sterile Compounding Safety

Volume Verification

- **ISMP RECOMMENDATION**
 Proxy methods of verification of ingredients, such as the SYRINE PULL-BACK METHOD of verification are never used.

Camera Technology (Volume)

- **Empty Syringe**
- **Medication in Syringe**
- **Medication added to Bag**

Hands-Free Technology

- **BEST PRACTICE**
 Use hands-free devices to the maximum extent possible while wearing sterile gloves and during compounding, to prevent removing gloved hands from hood requiring frequent disinfection.

- **Foot Pedals**
 - Programmable to keyboard keystrokes
 - Use with cameras: take, keep, discard
 - Advance prompts
Raising the Bar on Sterile Compounding Safety

Competency Assessment

Camera Technology (Technique)

- **Hood-Integrated Video Camera**

Observation Methods:

- Undisguised
- Disguised

COMPETENCY

- Knowledge
- Skills
- Abilities
- Behavior

ISMP RECOMMENDATION

All staff members involved in preparing CSPs or supervising the preparation of CSPs participate in a comprehensive orientation and training program as well as an ongoing competency assessment program.

Camera Technology (Room)

- Garbing
- Cleansing
- Line of Demarcation

BEST PRACTICE

Restrict access to cleanroom suite only to compounding personnel or staff with completed training on maintaining a cleanroom environment and cleansing/garbing with supervision.

Remote Monitoring

Monitor display in main pharmacy
Raising the Bar on Sterile Compounding Safety

Automated Compounders and Order Entry

BEST PRACTICE
Eliminate use of DOUBLE ORDER ENTRY of TPN orders from Electronic Health Record into the automated compounding device or connected software.

Single Order Entry

- Order Entry #1
- TPN Software
- Order Entry #2
- Electronic Health Record

Note: requires extensive testing to ensure all limits are properly configured

Automation and Separative Technologies

BEST PRACTICE
IV robotic devices are used to prepare ready-to-administer syringes, where conventionally manufactured products don’t exist, for use in the perioperative services setting and other areas.

IV Robotic Compounding

1. Use **automation technology**—to reduce or eliminate personnel interventions and thus personnel-borne contamination
2. Use **separative technologies**—to eliminate, to the extent technically possible, human sourced contamination
Raising the Bar on Sterile Compounding Safety

IV Robot (external)

- HEPA Filter (ISO 5 Laminar airflow)
- Drug Vial Port (with image recognition)
- Syringe Port (with image recognition)
- Bag Port
- Barcode Scanner
- Locked Door to Open RABS
- Restricted Access Barrier System (all aseptic manipulations)

IV Robot (internal)

- Laminar Vertical Flow (ISO 5)
- UV Disinfection Lamp
- Syringe Dosing
- Robotic Arm (performs all aseptic movements)
- Labeling
- Bag carousel
- Syringe Capper (not pictured)
Situation / Case Study

Your organization purchases ready-to-administer rocuronium syringes from a 503B to improve patient care, safety, and decrease bedside preparation. You receive an email from your 503B vendor that ‘due to increased demand, all products will be shipping 3-4 weeks late’. Due to the continued supply disruptions and impact to patient care, your organization evaluates using IV robotics to repackage rocuronium into ready-to-administer syringes.

Stability-Indicating Method Study

Analytical Method Verification
• System suitability and calibration curve
• Accuracy / Precision
• Specificity

Stability Study
• Conventionally manufactured ingredient → repackaged into sterile syringes
• Samples prepared on IV robot
• Triplicate lot testing
• Additional tests: Appearance, pH, particulate matter, endotoxin, sterility, container closure

Extended BUD Study
Rocuronium Bromide 10 mg/mL 5 mL and 10 mL in 10 mL BD Syringe at Room Temp
Case Study: Applying Proposed Revised USP <797>

Example

Repackaging sterile rocuronium from a conventionally manufactured vial into 10 mL syringes using an IV robotic device. A total of #200 syringes are prepared.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Compounding Method</th>
<th>Sterility Test</th>
<th>Ingredients</th>
<th>Category 3 Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom Suite</td>
<td>Aseptic</td>
<td>USP <71></td>
<td>Sterile</td>
<td></td>
</tr>
</tbody>
</table>

CATEGORY 3

<table>
<thead>
<tr>
<th>Storage Condition</th>
<th>Maximum BUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled Room Temperature (20° to 25°C)</td>
<td>60 days</td>
</tr>
<tr>
<td>Refrigerator (2° to 8°C)</td>
<td>90 days</td>
</tr>
<tr>
<td>Freezer (-25° to -10°C)</td>
<td>120 days</td>
</tr>
</tbody>
</table>

IV Robot Workflow

- Repackaging Using IV Robotic Automation
- Preparation Verification and Visual Inspection
- Quarantine
- Review Final Results
- Visual Inspection then Release products for patient use
- Celsis® Rapid Sterility Testing
- Ship Samples for Testing
Grocery Store Self Check-Out

- Software guided with soft/hard stops
- Barcode scanner
- Gravimetric scale (x2)
- Video
- Image/object recognition
- Security tag deactivation
- Wireless payment
- Visual alerts for needing assistance

Questions?
Raising the Bar on Sterile Compounding Safety

Online Evaluation and Statement of Completion

- www.ProCE.com
- Login with username and password
- Deadline: January 7, 2022

Attendance Code = YACDP6
CE ACTIVITY EVALUATION AND CREDIT INSTRUCTIONS

1. To receive CE credit for this activity, you must complete the post-test and activity evaluation online **no later than Friday, January 7, 2022.**

3. Click on the **Evaluation** button which is listed with the **Raising the Bar on Sterile Compounding Safety – December 8, 2021** CE activity.

4. Login to the ProCE Center. **Note: You will need to sign up for a new account if you have not previously used the ProCE Center.**

5. Enroll in the CE activity, then enter the **Attendance Code: YACDP6** (you will need this code to access the post-test and activity evaluation).

6. Take the post-test, complete the evaluation, and claim CE credit.

7. If you need assistance or have questions, please contact ProCE at 888.213.4061 or via email at info@proce.com.

Note: It is ProCE policy that CE requirements (i.e. post-test, if applicable for the specific CE activity, and evaluation) be completed within 30 days of the live activity date to ensure an on-time submission to your CPE Monitor account.
About ISMP

The Institute for Safe Medication Practices (ISMP), an affiliate of ECRI, is an independent, nonprofit organization, internationally known as an educational resource for the prevention of medication errors. With more than thirty-five years of experience, the Institute provides independent, objective, multidisciplinary, expert review of errors reported through the ISMP Medication Errors Reporting Program (MERP) and the FDA MedWatch Program. ISMP shares all error reports and prevention strategies with the FDA. Working with practitioners, healthcare institutions, regulatory and accrediting agencies, professional organizations, the pharmaceutical industry, and many others, ISMP provides timely and accurate medication safety information to the healthcare community and encourages safe use of medications. ISMP has an interdisciplinary staff, which includes pharmacists, nurses, a medical director, and other support personnel who assist in ongoing safety efforts.

About ProCE

ProCE, LLC is a leading ACPE-accredited provider and full-service medical education company that integrates the expertise of its staff to bring a depth of experience in pharmacotherapeutics, patient care, public health, medical writing, multimedia design and event management. The team has extensive experience developing and producing educational activities in partnership with professional pharmacy organizations, including the National Association of Specialty Pharmacy, the American Society of Health-System Pharmacists, the Academy of Managed Care Pharmacy, and the Society of Infectious Diseases Pharmacists. ProCE also has a longstanding history of partnering with respected healthcare organizations, including VA hospitals, community health systems, Ascension Health, colleges of pharmacy, the Institute for Safe Medication Practices (ISMP), and pharmacy benefits managers.

ProCE has extensive experience reaching the clinical and specialty pharmacist audience, delivering more than 50 symposia at the American Society of Health-System Pharmacists (ASHP) meetings during the past 11 years. Our CE activities are consistently well-attended and demonstrate significant increases in learner knowledge and competence. In addition to deep experience developing content related to the efficacy, safety, pharmacology, economics, and appropriate management of medication therapy in clinical practice, ProCE excels in addressing the unique educational and professional development needs of the pharmacy audience as well as those of the interprofessional, collaborative care team. ProCE is the ACPE-accredited partner for important interprofessional events, such as the Infectious Diseases Society of America (IDSA) IDWeek, the Intalere Elevate Conference, the Pharmacy Quality Alliance (PQA) Annual Meeting, and many others.