ISMP Targeted Medication Safety Best Practices for Hospitals
The purpose of the *ISMP Targeted Medication Safety Best Practices for Hospitals* is to identify, inspire, and mobilize widespread, national adoption of consensus-based Best Practices for specific medication safety issues that continue to cause fatal and harmful errors in patients, despite repeated warnings in ISMP publications. Hospitals and health systems can focus their medication safety efforts over the next 2 years on these Best Practices, which are realistic and have been successfully adopted by numerous organizations. While targeted for the hospital-based setting, some Best Practices are applicable to other healthcare settings. The *ISMP Targeted Medication Safety Best Practices for Hospitals* have been reviewed by an external Expert Advisory Panel and approved by the ISMP Board of Trustees. Related issues of the *ISMP Medication Safety Alert!* are referenced after each Best Practice (bolded dates indicate those that are key articles).

ISMP encourages hospitals that have not implemented the *ISMP Targeted Medication Safety Best Practices for Hospitals* to do so as a priority, while implementing the new and revised Best Practices for 2020-2021. Four Best Practices (numbers 4, 5, 8, and 11) have been revised for 2020-2021; two new Best Practices (numbers 15 and 16) were added; Best Practice number 12 was incorporated into new Best Practice number 15; and one Best Practice (number 6) was archived. Related documents include *ISMP Targeted Medication Safety Best Practices for Hospitals* Frequently Asked Questions (FAQs) and an *ISMP Targeted Medication Safety Best Practices for Hospitals* Implementation Worksheet.
BEST PRACTICE 1:

Dispense vinCRIStine and other vinca alkaloids in a minibag of a compatible solution and not in a syringe.

Rationale:
The goal of this Best Practice is to ensure that vinca alkaloids are only administered by the intravenous route. Vinca alkaloids (vinBLAStine, vinorelbine, vinCRIStine, vinCRIStine liposomal, etc.) can cause fatal neurological effects if given via the intrathecal route instead of intravenously. VinCRIStine is particularly problematic and the most frequently reported vinca alkaloid associated with inadvertent intrathecal administration. Deaths have been reported throughout the world when the drug was dispensed in a syringe and given into spinal fluid instead of intravenously. For example, more than 130 cases have been reported worldwide with vinCRIStine given to leukemic patients. This often happens when a syringe of vinCRIStine is mistakenly used instead of a syringe of cytarabine, hydrocortisone, or methotrexate, which are supposed to be given into spinal fluid to the same leukemic patient. When vinca alkaloids are injected intrathecally, destruction of the central nervous system occurs, radiating out from the injection site. The few survivors of this medication error have experienced devastating neurological damage. Despite repeated warnings by various national and international safety agencies, deaths from this type of error still occur. The product labeling of all currently marketed vinca alkaloids also carry a special warning (“For Intravenous Use Only—Fatal If Given by Other Routes”).

An effective prevention strategy that reduces the risk of inadvertently administering vinca alkaloids via the intrathecal route is to dilute the drug in a minibag that contains a volume that is too large for intrathecal administration (e.g., 25 mL for pediatric patients and 50 mL for adult patients). Many organizations have successfully switched to preparing vinca alkaloids in minibags, including pediatric hospitals and health systems, overcoming concerns of extravasation and other complications. There have been no reported cases of accidental administration of a vinca alkaloid by the intrathecal route when dispensed in a minibag. This Best Practice is supported by The Joint Commission (TJC), the American Society of Clinical Oncology (ASCO), the Oncology Nursing Society (ONS), the National Comprehensive Cancer Network (NCCN), and the World Health Organization.

Following ISMP’s “Call to Action” in March 2019 to have administration by syringe removed from instructions in all vinca alkaloids’ product labeling, NCCN and TJC have sent letters to the US Food and Drug Administration (FDA) in support of the request.

In 2019, the International Medication Safety Network (IMSN) introduced new Global Targeted Medication Safety Best Practice 2 - Prepare and dispense vinca alkaloids in a minibag, never in a syringe aimed at preventing fatalities due to medication errors with inadvertent intraspinal injection of vinCRIStine.

References:
BEST PRACTICE 2:

a) Use a weekly dosage regimen default for oral methotrexate in electronic systems when medication orders are entered.

b) Require a hard stop verification of an appropriate oncologic indication for all daily oral methotrexate orders.

- For manual systems and electronic order entry systems that cannot provide a hard stop, clarify all daily orders for methotrexate if the patient does not have a documented appropriate oncologic diagnosis.
- Hospitals need to work with their software vendors and information technology departments to ensure that this hard stop is available. Software vendors need to ensure that their order entry systems are capable of this hard stop as an important patient safety component of their systems.

c) Provide specific patient and/or family education for all oral methotrexate discharge orders.

- Double-check all printed medication lists and discharge instructions to ensure that they indicate the correct dosage regimen for oral methotrexate prior to providing them to the patient.
- Ensure that the process for providing discharge instructions for oral methotrexate includes clear written instructions AND clear verbal instructions that specifically review the dosing schedule, emphasize the danger with taking extra doses, and specify that the medication should not be taken “as needed” for symptom control.
- Require the patient to repeat back the instructions to validate that the patient understands the dosing schedule and toxicities of the medication if taken more frequently than prescribed.
- Provide all patients with a copy of the free ISMP high-alert medication consumer leaflet on oral methotrexate (found at: www.ismp.org/ext/221).

Rationale:

The goal of this Best Practice is to prevent errors involving inadvertent daily dosing of oral methotrexate both in the inpatient setting and after discharge. Since early 1996, harmful and fatal errors have been reported to ISMP involving the accidental daily dosing of oral methotrexate that was intended for weekly administration.

Methotrexate is a folate antimetabolite used to treat different types of cancers. Since the drug's introduction, its labeled indications have expanded to include non-oncologic uses. It is now used to treat a variety of autoimmune diseases (e.g., psoriasis, severe rheumatoid arthritis, lupus) and other disorders. When used for immunomodulation to treat disorders such as rheumatoid arthritis, the drug is administered once a week.

Prescribing errors occur when physicians or other providers, who are familiar with prescribing many medications for daily administration, erroneously prescribe this medication daily instead of weekly. Dispensing errors occur in much the same way, when pharmacy technicians and pharmacists inadvertently select/approve daily instead of weekly administration during order entry or verification. Patient errors have occurred when complex directions were misunderstood. While patient harm and fatalities have occurred during hospitalization, many have occurred after discharge.

Ongoing errors with oral methotrexate for non-oncologic use suggest that more needs to be done to reduce the risk of patient harm. It is important for hospitals not only to ensure that the proper dosage regimen is administered during hospitalization, but also to implement effective, proactive strategies so that the proper dosage regimen is maintained after discharge. While all hospitals routinely provide discharge instructions to patients and/or families about the patients’ medication use after discharge, extra attention is important with oral methotrexate so that the patient and/or family understands both the proper dosage regimen and potential toxicities when taking more than prescribed.

Continued on next page
BEST PRACTICE 2: continued

In 2019, the International Medication Safety Network (IMSN) introduced new Global Targeted Medication Safety Best Practice 3 - Prevent inadvertent daily dosing of oral methotrexate for non-oncologic conditions aimed at preventing accidental daily instead of weekly dosing of methotrexate.

BEST PRACTICE 3:

a) Weigh each patient as soon as possible on admission and during each appropriate* outpatient or emergency department encounter. Avoid the use of a stated, estimated, or historical weight.
 - Have metric scales available in all areas where patients are admitted or encountered. Ensure the metric weight is documented in the medical record.
 - Do not rely on a patient's stated weight, a healthcare provider's estimated weight, or a documented weight from a previous encounter.

* Appropriate encounters include all encounters where the patient is being seen by a licensed independent practitioner, excluding life-threatening situations where the delay involved in weighing the patient could lead to serious harm (e.g., major trauma). Encounters that involve laboratory and other services where medications are not prescribed or administered would be considered an exclusion to this definition.

b) Measure and document patient weights in metric units only.
 - If scales can measure in both pounds/ounces and kilograms/grams, modify the scale to lock out the ability to weigh in pounds/ounces.
 - If purchasing or replacing scales, buy new scales that measure in, or can be locked to measure in, metric units only.
 - Have charts that convert from kilograms (or grams for pediatrics) to pounds available near all scales, so that patients/caregivers/parents can be told the weight in pounds, if requested.
 - Ensure that electronic health record screen views, medication device screens (e.g., infusion pumps), printed patient information documents, and printed order and/or communication forms, list or prompt for the patient's weight in metric units only.
 - Document the patient's weight in metric units only in all electronic and written formats.

Rationale:
The first goal of this Best Practice is to ensure, as much as possible, that the patient's actual weight is obtained upon each admission or appropriate encounter. Many medication doses are based on the patient's weight. Relying on a stated, estimated, or historical weight can cause inaccurate dosing (both under- and overdosing).

The second goal is to standardize the measurement and communication of a patient's weight using only metric units of measure (grams [g] and kilograms [kg]). Official product labeling for medications provides weight-based dosing using only the metric system (e.g., mg/kg, units/kg). Significant medication errors have occurred when the patient's weight was communicated and/or documented in non-metric units of measure (pounds and ounces) and was confused with kilograms or grams. Numerous mistakes have been reported in which practitioners converted a weight from one measurement system to another, or weighed a patient in pounds, but accidentally documented the weight value as kilograms in the medical record, resulting in more than a two-fold dosing error.

Best Practice 3
First Introduced:
2014-2015

Related ISMP Medication Safety Alerts!
December 1, 2011; August 26, 2010; January 15, 2009; November 17, 1999.

www.ismp.org/ext/349
BEST PRACTICE 4: (REVISED)

Ensure that all oral liquid medications that are not commercially available in unit dose packaging are dispensed by the pharmacy in an oral syringe or an enteral syringe that meets the International Organization for Standardization (ISO) 80369 standard, such as ENFit.

- Do not stock bulk oral solutions of medications on patient care units.
- Use only oral syringes that are distinctly marked “Oral Use Only.”
- When ISO 80369 compliant syringes (e.g., ENFit) are used for administration of oral liquid medications, always highlight on the pharmacy label, or affix an auxiliary label, “For Oral Use Only” on the syringe.
- Ensure that the oral/enteral syringes used do not connect to any type of parenteral tubing used within the organization.

Exception: If the pharmacy is employing unit dose packaging automation that does not use oral syringes, unit dose cups/bottles may be provided in place of oral syringes. However, ensure that oral or ISO 80369 compliant syringes (e.g., ENFit) are available on nursing units in case patients cannot drink the medication from the cup or bottle.

Rationale:
The goal of this Best Practice is to prevent the unintended administration of oral medications via the intravenous route. Reports in which patients were inadvertently given an oral liquid medication intravenously continue to be sent to ISMP. This happens most often when an oral liquid is prepared extemporaneously or dispensed in a parenteral syringe that connects to vascular access lines. Such errors have resulted in patient death or major harm. Fatalities have also occurred when the contents of liquid-filled capsules (e.g., niMODipine) were withdrawn for oral administration via a nasogastric or other tube with a parenteral syringe and then inadvertently administered intravenously. The oral and ISO 80369 compliant syringe tip is designed to be incompatible with vascular lines so it cannot be inadvertently attached.

Reason for the revision:
This Best Practice was updated to refer to the oral and enteral syringes by their ISO classification. In order to help reduce the risk of cross connections, the Global Enteral Device Supplier Association (GEDSA) member manufacturers will begin to phase out legacy feeding tubes (non-ENFit) starting July 1, 2020.
BEST PRACTICE 5: (REVISED)

Purchase oral liquid dosing devices (oral syringes/cups/droppers) that only display the metric scale.

In addition, if patients are taking an oral liquid medication after discharge, educate patients to request appropriate oral dosing devices to measure oral liquid volumes in milliliters (mL) only.

Rationale:
The goal of this Best Practice is to use liquid medication dosing devices (specifically oral syringes, cups, and droppers) that only display volume using the metric scale. ISMP has received more than 50 reports of mix-ups between milliliters (mL) and household measures such as drops and teaspoonfuls, some leading to injuries requiring hospitalization. Oral syringes, dosing cups, droppers, and other measuring devices have been involved. Use of the apothecary system has also caused confusion with mix-ups between drams and mL and other non-metric measurements such as ounces and tablespoons. ISMP first reported confusion in the year 2000 and has continued to receive reports of medication errors because of mix-ups between metric and non-metric units of measure.

The purchase and use of commercially available oral syringes, cups, and droppers that only display volume using an easy-to-read printed (rather than embossed) metric scale will help prevent these types of errors.

Reason for the revision:
This Best Practice was updated to make it more in alignment with the goal and to remove the comment to supply patients “with (or provide a prescription for) oral syringes,” as some patients will not need a prescription for an oral liquid dosing device.

Best Practice 5
First Introduced: 2014-2015

Related ISMP Medication Safety Alerts!:
November 1, 2012; September 20, 2012; June 14, 2012; December 1, 2011; September 22, 2011; March 22, 2007; March 6, 2003; **June 28, 2000**; February 26, 1997.

See also: ISMP Statement on Use of Metric Measurements to Prevent Errors with Oral Liquids. ISMP News Release. October 1, 2011. www.ismp.org/node/496

BEST PRACTICE 6: (ARCHIVED)

See page 17

Eliminate glacial acetic acid from all areas of the hospital.
BEST PRACTICE 7:
Segregate, sequester, and differentiate all neuromuscular blocking agents (NMBs) from other medications, wherever they are stored in the organization.

• Eliminate the storage of NMBs in areas of the hospital where they are not routinely needed.
• In patient care areas where they are needed (e.g., intensive care unit), place NMBs in a sealed box or, preferably, in a rapid sequence intubation (RSI) kit.
• Limit availability in automated dispensing cabinets (ADCs) to perioperative, labor and delivery, critical care, and emergency department (ED) settings; in these areas, store NMBs in a rapid sequence intubation (RSI) kit, or lock-lidded ADC pockets/drawers.
• Segregate NMBs from all other medications in the pharmacy by placing them in separate lidded containers in the refrigerator or other secure, isolated storage area.
• Place auxiliary labels on all storage bins and/or ADC pockets and drawers that contain NMBs as well as all final medication containers of NMBs (e.g., syringes, IV bags) that state: “WARNING: CAUSES RESPIRATORY ARREST – PATIENT MUST BE VENTILATED” or “WARNING: PARALYZING AGENT – CAUSES RESPIRATORY ARREST” or “WARNING: CAUSES RESPIRATORY PARALYSIS – PATIENT MUST BE VENTILATED” to clearly communicate that respiratory paralysis will occur and ventilation is required.

Exception: The auxiliary label practice excludes anesthesia-prepared syringes of NMBs.

* Other acceptable alternatives to labeling storage bins and/or ADC pockets are to affix an auxiliary warning label (in addition to the manufacturer’s warning on the caps and ferrules) directly on all vials and/or other containers stocked in storage locations, or by displaying a warning on the ADC screen (e.g., “Patient must be intubated to receive this medication”) that interrupts all attempts to remove a neuromuscular blocker via a patient’s profile or on override. The warning should require the user to enter or select the purpose of the medication removal (“other” should not be a choice) and verify that the patient is (or will be) manually or mechanically ventilated.

Rationale:
The goal of this Best Practice is to prevent errors related to accidental administration of NMBs to patients, especially those not receiving proper ventilator assistance. Because the respiratory muscles are paralyzed by these agents, errors in the compounding, dispensing, and administration of these medications instead of other drugs have resulted in death or serious, permanent injury. Even with patients requiring ventilator assistance, severe psychological trauma can occur if the NMB is accidentally administered prior to sedation.

ISMP has received well over 100 reports concerning accidental administration of NMBs and has been discussing the hazards of these agents since 1996. Most errors with the use of these agents have been the result of using or compounding a NMB in error instead of the intended drug. In 2014, a widely publicized death caused by compounding a NMB solution instead of a fosphenytoin solution received national attention. A few years later, in 2017, due to several system failures, the accidental administration of a NMB in place of midazolam resulted in another patient death. Inadequate labeling or unsafe storage has been the root cause of most of these errors. Segregation in storage areas and the use of proper warning labels can be an effective means of preventing mix-ups with NMBs.

Best Practice 7
First Introduced: 2016-2017

Related ISMP Medication Safety Alerts:
BEST PRACTICE 8: (REVISED)

a) Administer medication infusions via a programmable infusion pump utilizing dose error-reduction systems. *
b) Maintain a 95% or greater compliance rate for the use of dose error-reduction systems.
c) Monitor compliance with use of smart pump dose error-reduction systems on a monthly basis.
d) If your organization allows for the administration of an IV bolus or a loading dose from a continuous medication infusion, use a smart pump that allows programming of the bolus (or loading dose) and continuous infusion rate with separate limits for each.

• Allocate resources for ongoing maintenance, updating, and testing of the software and drug library for all smart infusion pumps.
• Ensure drug library content is consistent with the drug information and nomenclature (e.g., drug name, dosing units, dosing rate) in the electronic health record.
• Plan for the implementation of bi-directional (i.e., auto-programming † and auto-documentation ‡) smart infusion pump interoperability with the electronic health record.

This Best Practice applies to all hospital settings, both inpatient and outpatient (e.g., magnetic resonance imaging [MRI] department, emergency department, outpatient infusion clinics), and to all situations in which medications are infused by the IV or epidural route, including anesthesia use and patient-controlled analgesia (PCA). The only exception is for small volume vesicant infusions (i.e., chemotherapy vesicants) which, when administered via the peripheral route, should only be infused by gravity and NOT by an infusion/syringe pump.

* Dose error-reduction systems: Refers to the integral computer software in smart infusion pumps intended to aid in prevention of infusion programming-related errors and warn users of potential over- or under-delivery of a medication or fluid by checking programmed doses/rates against facility configurable preset limits specific to a medication, fluid, and to a clinical application (e.g., epidural administration) and/or location (e.g., neonatal intensive care unit, medical/surgical unit).
† Auto-programming: Automatic programming of infusion parameters from the electronic health record system to the smart infusion pump (which are then verified, and the infusion is started manually by the practitioner) after use of the barcode medication administration system to associate the patient, fluid container (e.g., bag, bottle, syringe), and pump channel.
‡ Auto-documentation (also known as auto-charting or infusion documentation): Sending infusion information such as intake data, dose/rate changes, and infusion stop time, to the electronic health record system for manual clinician confirmation to enable accurate recording of this information to the patient's record after the infusion is started.

Rationale:
The goal of this Best Practice is to ensure the use of dose error-reduction technology to prevent infusion-related medication errors, which can cause harm to patients. Infusion-related medication errors expose patients to a higher risk of harm. Programmable infusion pumps with dose error-reduction systems help to avert these potentially harmful errors by “remembering” the large number of “rules” (hospital-defined dosing limits and other clinical advisories) entered into the drug library, and applying those “rules” during pump programming to warn clinicians about potentially unsafe drug therapy. Implementation of bi-directional interoperability connecting the smart infusion pump and the electronic health record will further reduce the risk of programming errors and provide a mechanism for more accurate documentation of infusing medications.

Reason for the revision:
This Best Practice was updated in order to broaden the scope beyond just high-alert medications. It was also meant to emphasize the importance of ensuring use of the dose error-reduction systems and planning for interoperability between an organization’s infusion pumps and electronic health record.

Best Practice 8
First Introduced:
2016-2017

Related ISMP Medication Safety Alerts!:
July 12, 2018; May 31, 2018; April 5, 2018; April 9, 2015; February 23, 2012; May 5, 2011; October 7, 2010; April 8, 2010; August 28, 2008; September 20, 2007; August 23, 2007; June 14, 2007; April 19, 2007; May 6, 2004; April 7, 2005; September 18, 2002.

See also: ISMP Guidelines for Optimizing Safe Implementation and Use of Smart Infusion Pumps (2020).
www.ismp.org/node/972
BEST PRACTICE 9:

Ensure all appropriate antidotes, reversal agents, and rescue agents are readily available. Have standardized protocols and/or coupled order sets in place that permit the emergency administration of all appropriate antidotes, reversal agents, and rescue agents used in the facility. Have directions for use/administration readily available in all clinical areas where the antidotes, reversal agents, and rescue agents are used.

- Identify which antidotes, reversal agents, and rescue agents can be administered immediately in emergency situations to prevent patient harm.
- Use this list to develop appropriate protocols or coupled order sets to ensure that the above Best Practice is met.

Rationale:
The goal of this Best Practice is to ensure that when an antidote, reversal agent, or rescue agent is known for a drug that has a high potential to cause an adverse reaction, or if a toxic dose is inadvertently administered, the agent is readily available and can be administered without delay. Some medications have a high potential to cause an adverse reaction even when the appropriate dose is administered (e.g., iron dextran). Adverse effects can also occur if an overdose of a medication is accidentally administered. In both cases, the reaction can be life-threatening, and sometimes immediate intervention is needed. For some drugs, an antidote, reversal agent, or rescue agent may exist to counteract the reaction. For example, naloxone counteracts the effects of opioids, flumazenil counteracts benzodiazepines, lipid emulsions counteract the cardiotoxic effects of local anesthetics, and uridine triacetate counteracts the toxic effects of fluorouracil.

ISMP has received reports of death and serious harm because there was a delay in the administration of the appropriate antidote, reversal agent, or rescue agent (e.g., EPINEPHrine for anaphylaxis). Known antidotes, reversal agents, and rescue agents must be routinely available and, in certain situations, stored in areas where these high-risk medications are administered. In addition, it is important to have standardized protocols or coupled order sets so qualified staff can treat the reaction/overdose without waiting for an order from the prescriber. Also, the directions for use should be available near where these agents are stored to avoid a delay or improper use and administration of the agent.

Best Practice 9
First Introduced:
2016-2017

Related ISMP Medication Safety Alerts!:
July 1, 2010; April 8, 2010; March 11, 2010; February 22, 2007; January 11, 2007; December 14, 2006; November 3, 1999; September 10, 1999.
BEST PRACTICE 10:

Eliminate all 1,000 mL bags of sterile water (labeled for “injection,” “irrigation,” or “inhalation”) from all areas outside of the pharmacy.

- Use alternatives to avoid the storage and use of 1,000 mL (1 liter) bags of sterile water for injection, irrigation, or inhalation in patient care areas. For example, replace all 1,000 mL (1 liter) bags of sterile water for injection, irrigation, or inhalation with 2,000 mL (2 liter) bags of sterile water for injection, irrigation, or inhalation; bottles of sterile water for irrigation; or vials.
- Establish a policy that 1,000 mL bags of sterile water can only be ordered by the pharmacy.
- The pharmacy needs to work with respiratory therapy and other relevant departments of the hospital to establish guidelines regarding the safest way to provide large volumes of sterile water when needed for patient care.

Rationale:
The goal of this Best Practice is to prevent the accidental administration of an intravenous (IV) infusion of sterile water to a patient. Administering large quantities of hypotonic sterile water IV has resulted in patient harm, including death, from hemolysis. ISMP has received reports of mix-ups between the 1 liter bags of sterile water for injection, irrigation, and inhalation with 1 liter bags of dextrose 5% (D5W) and 0.9% sodium chloride (normal saline [NS]). These products look very similar in size, shape, and type of flexible plastic bag used for distribution.

Respiratory therapy staff may need to use bags of sterile water for inhalation in patient care units for humidification with ventilators or continuous positive airway pressure (CPAP) devices. In addition, due to the large volume of sterile water needed to reconstitute traditional dantrolene, sterile water bags for injection may need to be stored in malignant hyperthermia (MH) carts in the perioperative and procedural areas of the hospital. Unfortunately, if the sterile water bag is not used, it may be returned to the wrong storage area where IV bags are routinely kept (e.g., medication rooms, on IV poles). Therefore, when large volume bags of sterile water must be used outside of the pharmacy, the best approach is to use 2 liter bags, or bottles of sterile water, to prevent mix-ups because the larger volume or shape of the container will differentiate these products from 1 liter bags of D5W and NS. Also, use of the concentrated suspension of dantrolene, which can be reconstituted with a small amount of sterile water from vials, eliminates the need for large volume sterile water bags on the MH cart.

Best Practice 10 First Introduced: 2016-2017

Related ISMP Medication Safety Alerts!:
BEST PRACTICE 11: **(REVISED)**

When compounding sterile preparations, perform an independent verification to ensure that the proper ingredients (medications and diluents) are added, including confirmation of the proper amount (volume) of each ingredient prior to its addition to the final container.

- Specifically, eliminate the use of proxy methods of verification for compounded sterile preparations of medications (e.g., the “syringe pull-back method,” checking a label rather than the actual ingredients).
- Except in an emergency, perform this verification in all locations where compounded sterile preparations are made, including patient care units.
- Use technology to assist in the verification process (e.g., barcode scanning verification of ingredients, gravimetric verification, robotics, IV workflow software) to augment the manual processes. *When technology is in use, it is important that processes are in place to ensure it is maintained, the software is updated, and that the technology is always used in a manner that maximizes the medication safety features of these systems.*

Rationale:
The goal of this Best Practice is to prevent medication errors during sterile compounding of drugs, that are not detected with proxy checks, such as the “syringe pull-back method” or other retrospective verification processes. ISMP has reported multiple serious compounding errors that caused patient harm or death mostly due to preparation of the wrong concentration/strength or using the wrong product or diluent. Many of these would have been identified prior to dispensing if preproduction checks or sterile processing technology would have been utilized.

ISMP has received reports of errors that were specifically attributed to a failed check system when using the “syringe pull-back method.” This error-prone method has been used in pharmacies during the sterile compounding process for years. Using this method, an ingredient is injected from the syringe into the final container, and the plunger is then pulled back to the amount on the syringe that was injected. It is this “pulled-back” syringe that is checked to determine the accuracy of the amount injected. Errors may not be detected if the syringe does not reflect the actual amount added or when the pulled-back syringes are partnered with the wrong container of medication.

Reason for the revision:
This Best Practice was revised to reflect the goal to perform prospective verification of all compounded sterile preparations.

Best Practice 11
First Introduced:
2016-2017

Related ISMP Medication Safety Alerts:
- **January 15, 2015:** March 12, 2015; December 18, 2014; October 9, 2014; **July 11, 2013:** October 18, 2012; June 2, 2011; April 21, 2011; **July 1, 2010:** April 23, 2009; August 23, 2000.

See also: ISMP Guidelines for Safe Preparation of Compounded Sterile Preparations (2016).
www.ismp.org/node/101
BEST PRACTICE 12:
(INCORPORATED INTO NEW BEST PRACTICE 15)
Eliminate the prescribing of fentaNYL patches for opioid-naïve patients and/or patients with acute pain.

- Ensure the organization has a process in place to routinely document the patient’s opioid status (naïve vs. tolerant) and type of pain (acute vs. chronic) in the health record or prescriber orders.
- Implement a process to verify and prevent orders for fentaNYL patches in patients who are opioid-naïve or with acute pain. (Examples include the use of hard stops during order entry, electronic alerts, automatic interchange, and pharmacy interventions with prescribers.)
- Eliminate the storage of fentaNYL patches in automated dispensing cabinets or as unit stock in clinical locations where acute pain is primarily treated (e.g., in the emergency department, operating room, post-anesthesia care unit, procedural areas).

Best Practice 12 First Introduced: 2018-2019

BEST PRACTICE 13:
Eliminate injectable promethazine from the formulary.

- Remove injectable promethazine from all areas of the organization including the pharmacy.
- Classify injectable promethazine as a non-stocked, non-formulary medication.
- Implement a medical staff-approved automatic therapeutic substitution policy to convert all injectable promethazine orders to another antiemetic.
- Remove injectable promethazine from all medication order screens, and from all order sets and protocols.

This Best Practice includes not using intramuscular administration of promethazine because this can also cause tissue damage if accidentally injected intraarterially.

Rationale:
The goal of this Best Practice is to eliminate the risk of serious tissue injuries and amputations from the inadvertent arterial injection or IV extravasation of injectable promethazine. ISMP brought attention to this serious issue in August 2006 and conducted a survey to determine the prevalence of the issue. Of the nearly 1,000 responses to the survey, 1 in 5 reported awareness of such an occurrence in their facility during the prior 5 years. The US Food and Drug Administration (FDA) requires the manufacturer to include strong warnings about the risk of inadvertent intraarterial injection or perivascular extravasation of this drug in the package insert. Injectable promethazine has been included on the ISMP List of High-Alert Medications in Acute Care Settings (www.ismp.org/node/103) since 2007.

In 2009, ISMP recommended removal of injectable promethazine from an organization’s formulary, if possible, and use of safer alternatives such as 5-HT3 antagonists (e.g., ondansetron). However, these products were significantly higher in cost at the time. Since then, these alternative injectable antiemetics have become available as generic products and are significantly less costly. Thus, injectable promethazine has been used less frequently, and for safety, should now be removed from all formularies.

Best Practice 13 First Introduced: 2018-2019

Related ISMP Medication Safety Alerts:
June 27, 2013; October 8, 2009; September 24, 2009; October 9, 2008; November 2, 2006; August 10, 2006.
BEST PRACTICE 14:

Seek out and use information about medication safety risks and errors that have occurred in other organizations outside of your facility and take action to prevent similar errors.

- Appoint a single healthcare professional (preferably a medication safety officer) to be responsible for oversight of this entire activity in the hospital.
- Identify reputable resources (e.g., ISMP, The Joint Commission, ECRI Institute, patient safety organizations, state agencies) to learn about risks and errors that have occurred externally.
- Establish a formal process for monthly review of medication risks and errors reported by external organizations, with a new or existing interdisciplinary team or committee responsible for medication safety. The process should include a review of the hospital’s current medication use systems (both manual and automated) and other data such as internal medication safety reports to determine any potential risk points that would allow a similar risk or error to occur within the hospital.
- Determine appropriate actions to be taken to minimize the risk of these types of errors occurring in the hospital.
- Document the decisions reached and gain approval for required resources as necessary.
- Share the external stories of risk and errors with all staff, along with any changes that will be made in the hospital to minimize their occurrence, and then begin implementation.
- Once implemented, periodically monitor the actions selected to ensure they are still being implemented and are effective in achieving the desired risk reduction. Widely share the results and lessons learned within the facility.

Rationale:

One of the most important ways to prevent medication errors is to learn from errors that have occurred in other organizations and to use that information to identify potential risk points or practices within your organization to prevent similar errors. Experience has shown that a medication error reported in one organization is also likely to occur in another. Seeking out external sources of risks and errors prompts the evaluation of similar risks within the organization that may otherwise be hidden, lying dormant for years before they cause an adverse outcome.

Because there’s a natural human tendency to “normalize” errors that happen elsewhere, believing they will never happen within the organization, leaders must convey that these external risks and errors offer valuable and necessary learning opportunities and must be sought out and reviewed regularly. They must convey that the organization is vulnerable to errors, and that they consider external errors to be a “clear and present danger” in their organization for which steps must be taken to prevent a similar occurrence.

To establish a process for learning from external risks and errors, organization leaders must identify reliable sources of information, establish a systematic way to review this information, assess the organization’s vulnerability to similar events, and determine a workable action plan to address any vulnerabilities. To facilitate such a process, ISMP publishes the ISMP Action Agenda in January, April, July, and October to summarize important topics published in the ISMP Medication Safety Alert! during the previous 3 months. The Agenda is prepared for leadership to use at an interdisciplinary committee meeting and with frontline staff to stimulate discussion and action to reduce the risk of medication errors. Each Agenda item includes a brief description of the medication safety problem, recommendations to reduce the risk of errors, and the issue number to locate additional information.

Other credible sources of information about risks and errors that can be used to proactively address known medication safety issues that could otherwise lead to harmful

Continued on next page
Rationale:
The goal of this Best Practice is to support appropriate prescribing of extended-release and long-acting opioid medications and prevent death and serious patient harm from inappropriate use of these medications. A secondary goal is specifically prevent the inappropriate use of fentaNYL patches to treat acute pain in patients who are opioid-naive. FentaNYL patches were the highest-ranking drug involved in serious adverse drug events (ADEs) reported to the US Food and Drug Administration (FDA) from 2008 through 2010. ISMP continues to receive reports, including fatalities, due to the prescribing, dispensing, and administration of fentaNYL patches to treat acute pain in opioid-naive patients.

Best Practice 15
First Introduced: 2020-2021

Related ISMP Medication Safety Alerts:
NEW BEST PRACTICE 16:

a) Limit the variety of medications that can be removed from an automated dispensing cabinet (ADC) using the override function.
b) Require a medication order (e.g., electronic, written, telephone, verbal) prior to removing any medication from an ADC, including those removed using the override function.
c) Monitor ADC overrides to verify appropriateness, transcription of orders, and documentation of administration.
d) Periodically review for appropriateness the list of medications available using the override function.

- Restrict medications available using override to those that would be needed emergently (as defined by the organization) such as antidotes, rescue and reversal agents, life-sustaining drugs, and comfort measure medications such as those used to manage acute pain or intractable nausea and vomiting.

Rationale:
The goal of this Best Practice is to minimize risks associated with the removal of medications from an automated dispensing cabinet using the “override” feature. One of the biggest challenges to the safe use of automated dispensing cabinets is the ease with which medications can be removed upon override, many times unnecessarily and with a lack of perceived risk. Practitioners often view the override process as a routine, rather than a risky step, and fail to recognize that use of the feature should be situation dependent and justifiable, and not based merely on an approved list of medications that can be obtained via override. Removing medications using the override feature should be limited to emergent circumstances when waiting for a pharmacist to review an order could adversely impact the patient’s condition, and approved overridable medications should be limited to those that fit this intended use.

Sometimes, practitioners will obtain a medication from a dispensing cabinet without a specific verbal, telephone, written, or electronic order. This may be incorrectly referred to as an “override;” however, all true overrides should begin with an order (or protocol) and end with a decision not to wait for a pharmacist review before obtaining the medication from the cabinet.

Another “override” safety concern involves the process that should be in place for pharmacists and nurse managers to retrospectively review medications removed using the override feature. Too often this step is absent or inadequate, or important findings never reach nurse leaders who have the oversight of nursing practice.

ISMP has repeatedly received reports of harmful and fatal medication errors that involved practitioners removing medications using the override feature of an automated dispensing cabinet.

Best Practice 16
First Introduced:
2020-2021

Related ISMP Medication Safety Alerts!:
October 24, 2019; February 14, 2019; January 17, 2019; December 19, 2019; August 1, 2019; June 20, 2019; March 14, 2019; February 28, 2019; February 22, 2018; January 11, 2018; June 2, 2016; January 13, 2011; March 10, 2011; September 9, 2010; November 19, 2009; January 17, 2008; May 31, 2007; February 22, 2007.

See also: ISMP Guidelines for the Safe Use of Automated Dispensing Cabinets (2019).
www.ismp.org/node/1372

* When selecting medications to be accessible using the override feature, avoid multiple use containers and limit the number of drug concentrations and the quantity of vials/ampules/tablets available.
† When monitoring override activity, specifically look for situations where more than one dose or one dosing unit was removed, the practitioner or practitioner type who is performing the override, and use this and other organization-specific data when periodically reviewing the appropriateness of the list of medications available.
BEST PRACTICE 6: (ARCHIVED)

Eliminate glacial acetic acid from all areas of the hospital.†

Remove and safely discard this product from all clinical areas of the hospital (including the pharmacy, clinics, and physician office practices), and replace it with vinegar (5% solution) or commercially available, diluted acetic acid 0.25% (for irrigation) or 2% (for otic use).

† Laboratory use excluded if the laboratory purchases the product directly from an external source.

Rationale:
The goal of this Best Practice is to prevent harm from the use of glacial acetic acid applied directly to patients. The use of hazardous chemicals in pharmacy compounding or for special therapeutic procedures and diagnostics is common in many hospitals. Patient harm has occurred when toxic chemicals have been misidentified as oral products, or when a very concentrated form of a chemical has been erroneously used in treating patients.

Of particular concern is glacial acetic acid. Accidental topical application of “glacial” (greater than or equal to 99.5%) acetic acid has repeatedly resulted in serious patient harm, including severe pain and serious tissue damage, third-degree burns, and in one case, bilateral leg amputation. Often in these cases, this item was either accidentally purchased or used in place of a much more diluted form of acetic acid, such as vinegar or a commercially available 0.25% acetic acid solution.

Reason for the change to archived status:
In 2020, ISMP created a new Best Practice designation of “archived.” While still important as a Best Practice, compliance with recommendations for an archived Best Practice signal that focus can be directed toward new and other existing Best Practices with lower adoption rates. Archived Best Practices maintain their original Best Practice number but will be listed after the unarchived Best Practices.

Best Practice 6
First Introduced: 2014-2015

Archived: 2020

Related ISMP Medication Safety Alerts!:
2020-2021 EXPERT ADVISORY PANEL

Gregory P. Burger, PharmD, CPPS, FASHP, NREMT
Medication Safety Coordinator
Stormont Vail Health
Topeka, KS

David T. Caron, Jr., RPh, PharmD
Director of Pharmacy
Hospital Compliance Officer
Martha’s Vineyard Hospital/Mass General Brigham
Oak Bluffs, MA

Michael C. Dejos, PharmD, BCPS, LSSBB, DPLA
System Medication Safety Officer
Methodist Le Bonheur Healthcare
Memphis, TN

Michael Ganio, PharmD, MS, BCPS, FASHP
Director, Pharmacy Practice and Quality
ASHP
Bethesda, MD

Patricia C. Kienle, RPh, MPA, BCSCP, FASHP
Director, Accreditation and Medication Safety
Cardinal Health Innovative Delivery Solutions
Wilkes-Barre, PA

Steve Meisel, PharmD, CPPS
System Director of Medication Safety
M Health Fairview
Minneapolis, MN

MiKaela Olsen, DNP, APRN-CNS, AOCNS, FAAN
Oncology and Hematology Clinical Nurse Specialist
Sidney Kimmel Comprehensive Cancer Center
at Johns Hopkins Hospital and Greenspring Oncology
Baltimore, MD

Amy L. Potts, PharmD, BCPPS
Program Director, Quality, Safety and Education
Department of Pharmacy
Monroe Carell Jr. Children’s Hospital at Vanderbilt
Nashville, TN

Georgene Saliba, RN, BSN, MBA, CPHRM, FASHRM
Sr. Director Corporate Risk Management-
Acute Division
UHS of Delaware, Inc.
King of Prussia, PA

Debora Simmons, PhD, RN, CCNS, FAAN
Assistant Professor
The University of Texas Health Science Center at Houston
School of Biomedical Informatics
Houston, TX

Randi M. Trope, DO, MBA, FAAP
Medical Director of Patient Safety
Stony Brook Children’s Hospital
Stony Brook, NY
ABOUT ISMP

The Institute for Safe Medication Practices (ISMP) is the only 501c (3) nonprofit organization devoted entirely to preventing medication errors. During its more than 25-year history, ISMP has helped make a difference in the lives of millions of patients and the healthcare professionals who care for them.

ISMP is known and respected as the gold standard for medication safety information. It also has served as a vital force for progress. ISMP’s advocacy work alone has resulted in numerous necessary changes in clinical practice, public policy, and drug labeling and packaging.

Among its many initiatives, ISMP runs the only national voluntary practitioner medication error reporting program, publishes newsletters with real-time error information read and trusted throughout the global healthcare community, and offers a wide range of unique educational programs, tools, and guidelines.

In 2020, ISMP formally affiliated with ECRI Institute to create one of the largest healthcare quality and safety entities in the world. The affiliation will allow both organizations to work more closely together for the benefit of providers, patient advocates, governments, and most importantly, patients.

As an independent watchdog organization, ISMP receives no advertising revenue and depends entirely on charitable donations, educational grants, newsletter subscriptions, and volunteer efforts to pursue its life-saving work. For more information or to donate to protect patients worldwide from harmful medication errors, visit ISMP online at www.ismp.org.
For more information about the ISMP Targeted Medication Safety Best Practices for Hospitals including Frequently Asked Questions and an Implementation Worksheet, see: www.ismp.org/node/160.